Competition between cap and basal actin fiber orientation in cells subjected to contact guidance and cyclic strain
نویسندگان
چکیده
In vivo, adhesive cells continuously respond to a complex range of physical cues coming from the surrounding microenvironment by remodeling their cytoskeleton. Topographical and mechanical cues applied separately have been shown to affect the orientation of the actin stress fibers. Here we investigated the combined effects of contact guidance by topographical cues and uniaxial cyclic strain on actin cytoskeleton orientation of vascular derived cells. We devised a modular setup of stretchable circular and elliptic elastomeric microposts, capable to expose the cells to both contact guidance and uniaxial cyclic strain. A competition occurs between these cues when both contact guidance and strain are oriented along the same direction. For the first time we show that this competition originates from the distinct response of perinuclear basal and actin cap fibers: While basal fibers follow the contact guidance cue, actin cap fibers respond to the cyclic strain by strain avoidance. We also show that nuclear orientation follows actin cap fiber orientation, suggesting that actin cap fibers are responsible for cellular reorientation. Taken together, these findings may have broad implications in understanding the response of cells to combined topographical and mechanical cues.
منابع مشابه
Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells
The actin cytoskeleton plays a crucial role for the spreading of cells, but is also a key element for the structural integrity and internal tension in cells. In fact, adhesive cells and their actin stress fiber-adhesion system show a remarkable reorganization and adaptation when subjected to external mechanical forces. Less is known about how mechanical forces alter the spreading of cells and t...
متن کاملCellular strain avoidance is mediated by a functional actin cap - observations in an Lmna-deficient cell model.
In adherent cells, the relevance of a physical mechanotransduction pathway provided by the perinuclear actin cap stress fibers has recently emerged. Here, we investigate the impact of a functional actin cap on the cellular adaptive response to topographical cues and uniaxial cyclic strain. Lmna-deficient fibroblasts are used as a model system because they do not develop an intact actin cap, but...
متن کاملCyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture.
Many planar connective tissues exhibit complex anisotropic matrix fiber arrangements that are critical to their biomechanical function. This organized structure is created and modified by resident fibroblasts in response to mechanical forces in their environment. The directionality of applied strain fields changes dramatically during development, aging, and disease, but the specific effect of s...
متن کاملMicrotubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells
Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stret...
متن کاملMechano-chemical control of human endothelium orientation and size
Human umbilical vein endothelial cells (EC) were grown on elastic silicone membranes subjected to cyclic stretch, simulating arterial wall motion. Stretching conditions (20% amplitude, 52 cycle/min) stimulated stress fiber formation and their orientation transversely to the strain direction. Cell bodies aligned along the same axis after the actin cytoskeleton. EC orientation response was inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015